हिंदी

In Fig.2, a Circle with Centre O is Inscribed in a Quadrilateral Abcd Such That, It Touches the Sides Bc, Ab, Ad and Cd at Points P, Q, R and S Respectively, If Ab = 29 Cm, Ad = 23 Cm, - Mathematics

Advertisements
Advertisements

प्रश्न

In Fig.2, a circle with centre O is inscribed in a quadrilateral ABCD such that, it touches the sides BC, AB, AD and CD at points P, Q, R and S respectively, If AB = 29 cm, AD = 23 cm, ∠B = 90° and DS = 5 cm, then the radius of the circle (in cm.) is:

विकल्प

  • (A) 11

  • (B) 18

  • (C) 6

  • (D) 15

MCQ

उत्तर

We know that, the lengths of the tangents drawn from an external point to a circle are equal.

DS = DR = 5 cm

∴ AR = AD − DR = 23 cm − 5 cm = 18 cm

AQ = AR = 18 cm

∴ QB = AB − AQ = 29 cm − 18 cm = 11 cm

QB = BP = 11 cm

In right Δ PQB, PQ2 = QB2 + BP2 = (11 cm)2 + (11 cm)2 = 2 × (11 cm)2

PQ = `11sqrt2r` cm … (1)

In right ΔOPQ,

PQ2 = OQ2 + OP2 = r2 + r2 = 2 r2

PQ = `11sqrt2r`… (2)

From (1) and (2), we get

r = 11 cm

Thus, the radius of the circle is 11 cm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2012-2013 (March) Delhi set 3

वीडियो ट्यूटोरियलVIEW ALL [4]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×