Advertisements
Advertisements
प्रश्न
ABCD एक समलंब है जिसमें AB || DC है तथा इसके विकर्ण परस्पर बिंदु O पर प्रतिच्छेद करते हैं। दर्शाइए कि `"AO"/"BO" = "CO"/"DO"` है।
उत्तर
बिंदु O से होकर एक रेखा EF खींचिए, जैसे कि EF || CD
ΔADC में, EO || CD
मूल आनुपातिकता सिद्धांत का उपयोग करके, हम प्राप्त करते हैं
`("AE")/("ED") = ("AO")/("OC")` ...(1)
ΔABD में, OE || AB
अतः, मूल आनुपातिकता सिद्धांत का उपयोग करके, हम प्राप्त करते हैं
`("ED")/("AE") = ("OD")/("BO")`
⇒ `("AE")/("ED") = ("BO")/("OD")` ...(2)
समीकरण (1) और (2) से, हम प्राप्त करते हैं
⇒ `("AO")/("OC") = ("BO")/("OD")`
⇒ `("AO")/("BO") = ("OC")/("OD")`
APPEARS IN
संबंधित प्रश्न
आकृति में यदि LM || CB और LN || CD हो तो सिद्ध कीजिए कि `"AM"/"AB" = "AN"/"AD"` है।
आकृति में DE || OQ और DF || OR है। दर्शाइए कि EF || QR है।
आकृति में क्रमशः OP, OQ और OR पर स्थित बिंदु A, B और C इस प्रकार हैं कि AB || PQ और AC || PR है। दर्शाइए कि BC || QR है।
आधारभूत समानुपातिकता प्रमेय का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की एक भुजा के मध्य-बिंदु से होकर दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है।(याद कीजिए कि आप इसे कक्षा IX में सिद्ध कर चुके हैं।)
एक चतुर्भुज ABCD के विकर्ण परस्पर बिंदु O पर इस प्रकार प्रतिच्छेद करते हैं कि `("AO")/("BO") = ("CO")/("DO")` है। दर्शाइए कि ABCD एक समलंब है।
यदि ∆ABC ~ ∆QRP, `(ar(ABC))/(ar(PQR)) = 9/4`, AB = 18 cm और BC = 15 cm है, तो PR बराबर ______ है।
ΔDEF ~ ΔRPQ दिया है। क्या कहना सत्य है कि ∠D = ∠R और ∠F = ∠P? क्यों?
आकृति में BD और CE परस्पर बिंद P पर प्रतिच्छेद करते हैंक्या ΔPBC ~ ΔPDE है? क्यों?
आकृति में, यदि PQRS एक समांतर चतुर्भुज है तथा AB || PS है, तो सिद्ध कीजिए कि OC || SR है।
सिद्ध कीजिए कि समबाहु त्रिभुज के सभी कोण न्यून कोण होते हैं।