हिंदी

Abcd is a Quadrilateral in Which Ad = Bc. E, F, G and H Are the Mid-points of Ab, Bd, Cd and Ac Respectively. Prove that Efgh is a Rhombus - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a quadrilateral in which AD = BC. E, F, G and H are the mid-points of AB, BD, CD and Ac respectively. Prove that EFGH is a rhombus.

योग

उत्तर

Given that AD = BC                                                    …..(1)

From the figure,
For triangle ADC and triangle ABD

2GH = AD and 2EF = AD, therefore 2GH = 2EF = AD …..(2)

For triangle BCD and triangle ABC

2GF = BC and 2EH=BC, therefore 2GF= 2EH = BC      …..(3)

From (1), (2) ,(3) we get,
2GH = 2EF = 2GF = 2EH
GH = EF = GF = EH
Therefore EFGH is a rhombus.
Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (A) [पृष्ठ १५०]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (A) | Q 8 | पृष्ठ १५०

संबंधित प्रश्न

In a ∆ABC, D, E and F are, respectively, the mid-points of BC, CA and AB. If the lengths of side AB, BC and CA are 7 cm, 8 cm and 9 cm, respectively, find the perimeter of ∆DEF.


In Fig. below, BE ⊥ AC. AD is any line from A to BC intersecting BE in H. P, Q and R are
respectively the mid-points of AH, AB and BC. Prove that ∠PQR = 90°.


L and M are the mid-point of sides AB and DC respectively of parallelogram ABCD. Prove that segments DL and BM trisect diagonal AC.


In parallelogram ABCD, E and F are mid-points of the sides AB and CD respectively. The line segments AF and BF meet the line segments ED and EC at points G and H respectively.
Prove that:
(i) Triangles HEB and FHC are congruent;
(ii) GEHF is a parallelogram.


In triangle ABC; M is mid-point of AB, N is mid-point of AC and D is any point in base BC. Use the intercept Theorem to show that MN bisects AD.


In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find FE, if BC = 14 cm


In parallelogram PQRS, L is mid-point of side SR and SN is drawn parallel to LQ which meets RQ produced at N and cuts side PQ at M. Prove that M is the mid-point of PQ.


The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only if, ______.


D, E and F are the mid-points of the sides BC, CA and AB, respectively of an equilateral triangle ABC. Show that ∆DEF is also an equilateral triangle.


Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of the trapezium.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×