Advertisements
Advertisements
प्रश्न
अक्षों के बीच रेखाखंड का मध्य बिंदु P(a, b) है। दिखाइए कि रेखा का समीकरण `"x"/"a" + "y"/"b" = 2` हैं।
उत्तर
मान लीजिए AB अक्षों के बीच का रेखाखंड है और P (a, b) इसका मध्य-बिंदु है।
माना A और B के निर्देशांक क्रमशः (0, y) और (x, 0) हैं।
चूँकि P(a, b) AB का मध्य-बिंदु है,
`(0 + x)/2, (y + 0)/2 = (a, b)`
=`(x/2, y/2) = (a, b)`
= `x/2 = a और y/2 = b`
∴ x = 2a और y = 2a
इस प्रकार, A और B के संबंधित निर्देशांक (0, 2b) और (2a, 0) हैं।
बिंदु (0, 2b) और (2a, 0) से जाने वाली रेखा का समीकरण है,
`(y - 2b) = ((0 - 2b))/((2a - 0)) (x - 0)`
`y - 2b = (-2b)/(2a) (x)`
a (y - 2b) = -bx
ay - 2ab = bx
अर्थात, bx + ay = 2ab
दोनों पक्षों को ab से विभाजित करने पर, हमें प्राप्त होता है
`(bx)/(ab) + (ay)/(ab) + (2ab)/(ab)`
= `x/a + y/b = 2`
इस प्रकार, रेखा का समीकरण `x/a + y/b = 2` है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
x-अक्ष और y-अक्ष के समीकरण लिखिए।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
ढाल `1/2` और बिंदु (−4, 3) से जाने वाली।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
बिंदु (0, 0) से जाने वाली और ढाल m वाली।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
मूल बिंदु के बाईं ओर x-अक्ष को 3 इकाई की दूरी पर प्रतिच्छेद करने तथा ढाल – 2 वाली।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
बिंदुओं (−1, 1) और (2, –4) से जाते हुए।
(−3, 5) से होकर जाने वाली और बिंदु (2, 5) और (−3, 6) से जाने वाली रेखा पर लंब रेखा का समीकरण ज्ञात कीजिए।
एक रेखा का समीकरण ज्ञात कीजिए जो निर्देशांकों से समान अंत: खंड काटती है और बिंदु (2, 3) से जाती है।
बिंदु (2, 2) से जाने वाली रेखा का समीकरण ज्ञात कीजिए जिसके द्वारा अक्षों से कटे अंतः खंडों का योग 9 है।
बिंदु (0, 2) से जाने वाली और धन x-अक्ष से `(2π)/3` के कोण बनाने वाली रेखा का समीकरण ज्ञात कीजिए। इसके समांतर और y-अक्ष को मूल बिंदु से 2 इकाई नीचे की दूरी पर प्रतिच्छेद करती हुई रेखा का समीकरण भी ज्ञात कीजिए।
किसी दूध भंडार का स्वामी प्रति सप्ताह 980 लिटर दूध, 14 रु. प्रति लिटर के भाव से और 1220 लिटर दूध 16 रु. प्रति लिटर के भाव से बेच सकता है। विक्रय मूल्य तथा मांग के मध्य के संबंध को रैखिक मानते हुए यह ज्ञात कीजिए कि प्रति सप्ताह वह कितना दूध 17 रु. प्रति लिटर के भाव से बेच सकता है?
निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:
y = 0
निम्नलिखित समीकरण को अंतःखंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतःखंड ज्ञात कीजिए:
3y + 2 = 0
निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:
x – y = 4
θ और p के मान ज्ञात कीजिए यदि समीकरण x cos θ + y sin θ = p रेखा `sqrt3`x + y + 2 = 0 का लंब रूप है।
रेखाओं y – x = 0, x + y = 0, और x – k = 0 से बने त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
रेखाओं 4x + 7y – 3 = 0 और 2x – 3y + 1 = 0 के प्रतिच्छेद बिंदु से जाने वाली रेखा का समीकरण ज्ञात कीजिए जो अक्षों से समान अंतः खंड बनाती हैं।
किसी बिंदु के लिए रेखा को दर्पण मानते हुए बिंदु (3, 8) का रेखा x + 3y = 7 में प्रतिबिंब ज्ञात कीजिए।
यदि रेखाएँ y = 3x + 1 और 2y = x + 3, रेखा y = mx + 4, पर समान रूप से आनत हों तो m का मान ज्ञात कीजिए।
निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:
x + 7y = 0
निम्नलिखित समीकरण को अंतः खंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतः खंड ज्ञात कीजिए:
4x – 3y = 6
निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:
`x - sqrt3y + 8 = 0`
निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:
y – 2 = 0