हिंदी

निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है: बिंदुओं (−1, 1) और (2, –4) से जाते हुए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

बिंदुओं (−1, 1) और (2, –4) से जाते हुए।

योग

उत्तर

बिंदुओं (x1, y1) और (x2, y2) से जाने वाली रेखा की ढाल = `("y"_2 - "y"_1)/("x"_2 - "x"_1)`

∴ (x1, y1) और (x2, y2) से होकर जाने वाली रेखा का समीकरण,

`"y" - "y"_1 = ("y"_2 - "y"_1)/("x"_2 - "x"_1) ("x" - "x"_1)`

दिया है: x1 = −1, y1 = 1, x2 = 2 और y2 = −4 रखने पर,

`"y" - 1 = (-4 -1)/(2 + 1) ("x" + 1) = 5/3 ("x" +1)`

या 3y – 3 = –5x – 5

अतः 5x + 3y + 2 = 0

shaalaa.com
रेखा के समीकरण के विविध रूप
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: सरल रेखाएँ - प्रश्नावली 10.2 [पृष्ठ २३४]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
अध्याय 10 सरल रेखाएँ
प्रश्नावली 10.2 | Q 7. | पृष्ठ २३४

संबंधित प्रश्न

निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

x-अक्ष और y-अक्ष के समीकरण लिखिए।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

ढाल `1/2` और बिंदु (−4, 3) से जाने वाली।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

बिंदु (0, 0) से जाने वाली और ढाल m वाली।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

मूल बिंदु से ऊपर y-अक्ष को 2 इकाई की दूरी पर प्रतिच्छेद करने वाली और x-अक्ष की धन दिशा के साथ 30° का कोण बनाने वाली।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

बिंदु `(2, 2sqrt3)` से जाने वाली और x-अक्ष से 75° के कोण पर झुकी हुई।


उस रेखा का समीकरण ज्ञात कीजिए जिसकी मूल बिंदु से लांबिक दूरी 5 इकाई और लंब, धन x-अक्ष से 30° का कोण बनाती है।


रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

∆PQR के शीर्ष P(2, 1), Q(−2, 3) और R(4, 5) हैं। शीर्ष R से जाने वाली माध्यिका का समीकरण ज्ञात कीजिए।


एक रेखा (1, 0) तथा (2, 3) बिंदुओं को मिलाने वाली रेखा खंड पर लंब है तथा उसको 1 : n के अनुपात में विभाजित करती है। रेखा का समीकरण ज्ञात कीजिए।


एक रेखा का समीकरण ज्ञात कीजिए जो निर्देशांकों से समान अंत: खंड काटती है और बिंदु (2, 3) से जाती है।


बिंदु (0, 2) से जाने वाली और धन x-अक्ष से `(2π)/3` के कोण बनाने वाली रेखा का समीकरण ज्ञात कीजिए। इसके समांतर और y-अक्ष को मूल बिंदु से 2 इकाई नीचे की दूरी पर प्रतिच्छेद करती हुई रेखा का समीकरण भी ज्ञात कीजिए।


मूल बिंदु से किसी रेखा पर डाला गया लंब रेखा से बिंदु (−2, 9) पर मिलता है, रेखा का समीकरण ज्ञात कीजिए।


अक्षों के बीच रेखाखंड का मध्य बिंदु P(a, b) है। दिखाइए कि रेखा का समीकरण `"x"/"a" + "y"/"b" = 2` हैं।


अक्षों के बीच रेखाखंड को बिंदु R(h, k), 1 : 2 के अनुपात में विभक्त करता है। रेखा का समीकरण ज्ञात कीजिए।


निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:

y = 0


निम्नलिखित समीकरण को अंतःखंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतःखंड ज्ञात कीजिए:

3y + 2 = 0


θ और p के मान ज्ञात कीजिए यदि समीकरण x cos θ + y sin θ = p रेखा `sqrt3`x + y + 2 = 0 का लंब रूप है।


रेखाओं y – x = 0, x + y = 0, और x – k = 0 से बने त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


किसी बिंदु के लिए रेखा को दर्पण मानते हुए बिंदु (3, 8) का रेखा x + 3y = 7 में प्रतिबिंब ज्ञात कीजिए।


निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:

x + 7y = 0


निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:

6x + 3y – 5 = 0


निम्नलिखित समीकरण को अंतः खंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतः खंड ज्ञात कीजिए:

3x + 2y – 12 = 0


निम्नलिखित समीकरण को अंतः खंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतः खंड ज्ञात कीजिए:

4x – 3y = 6


निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:

y – 2 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×