हिंदी

रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है: ∆PQR के शीर्ष P(2, 1), Q(−2, 3) और R(4, 5) हैं। शीर्ष R से जाने वाली माध्यिका का समीकरण ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

∆PQR के शीर्ष P(2, 1), Q(−2, 3) और R(4, 5) हैं। शीर्ष R से जाने वाली माध्यिका का समीकरण ज्ञात कीजिए।

योग

उत्तर

यह दिया गया है कि ΔPQR के शीर्ष P (2, 1), Q (-2, 3), और R (4, 5) हैं।

Let RL be the median through vertex R.

मान लीजिए कि RL शीर्ष R से होकर जाने वाली माध्यिका है।

इसलिए, L, PQ का मध्य-बिंदु है।

मध्य-बिंदु सूत्र द्वारा, बिंदु L के निर्देशांक `((2 - 2)/2, (1 + 3)/2) = (0, 2)` द्वारा दिए गए हैं

यह ज्ञात है कि बिंदु (x1, y1) और (x2, y2) से जाने वाली रेखा का समीकरण y - y1 = `(y_2 - y_1)/(x_2 - x_1) (x - x_1)` है

Therefore, the equation of RL can be determined by substituting (x1, y1) = (4, 5) and (x2, y2) = 0

इसलिए, RL का समीकरण (x1, y1) = (4, 5) और (x2, y2) = 0 प्रतिस्थापित करके निर्धारित किया जा सकता है

इसलिए, `y - 5 = (2 - 5)/(0 - 4) (x - 4)`

= `y - 5 = (-3)/(-4) (x - 4)`

= 4(y - 5) = 3(x - 4)

= 4y - 20 = 3x - 12

= 3x - 4y + 8 = 0

इस प्रकार, शीर्ष R से होकर जाने वाली माध्यिका का आवश्यक समीकरण 3x - 4y + 8 = 0 है।

shaalaa.com
रेखा के समीकरण के विविध रूप
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: सरल रेखाएँ - प्रश्नावली 10.2 [पृष्ठ २३४]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
अध्याय 10 सरल रेखाएँ
प्रश्नावली 10.2 | Q 9. | पृष्ठ २३४

संबंधित प्रश्न

निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

x-अक्ष और y-अक्ष के समीकरण लिखिए।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

बिंदु (0, 0) से जाने वाली और ढाल m वाली।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

मूल बिंदु के बाईं ओर x-अक्ष को 3 इकाई की दूरी पर प्रतिच्छेद करने तथा ढाल – 2 वाली।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

बिंदु `(2, 2sqrt3)` से जाने वाली और x-अक्ष से 75° के कोण पर झुकी हुई।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

बिंदुओं (−1, 1) और (2, –4) से जाते हुए।


उस रेखा का समीकरण ज्ञात कीजिए जिसकी मूल बिंदु से लांबिक दूरी 5 इकाई और लंब, धन x-अक्ष से 30° का कोण बनाती है।


(−3, 5) से होकर जाने वाली और बिंदु (2, 5) और (−3, 6) से जाने वाली रेखा पर लंब रेखा का समीकरण ज्ञात कीजिए।


बिंदु (0, 2) से जाने वाली और धन x-अक्ष से `(2π)/3` के कोण बनाने वाली रेखा का समीकरण ज्ञात कीजिए। इसके समांतर और y-अक्ष को मूल बिंदु से 2 इकाई नीचे की दूरी पर प्रतिच्छेद करती हुई रेखा का समीकरण भी ज्ञात कीजिए।


मूल बिंदु से किसी रेखा पर डाला गया लंब रेखा से बिंदु (−2, 9) पर मिलता है, रेखा का समीकरण ज्ञात कीजिए।


ताँबे की छड़ की लंबाई L (सेमी में) सेल्सियस ताप C का रैखिक फलन है। एक प्रयोग में यदि L = 124.942 जब C = 20 और L = 125.134 जब C = 110 हो, तो L को C के पदों में व्यक्त कीजिए। 


अक्षों के बीच रेखाखंड का मध्य बिंदु P(a, b) है। दिखाइए कि रेखा का समीकरण `"x"/"a" + "y"/"b" = 2` हैं।


अक्षों के बीच रेखाखंड को बिंदु R(h, k), 1 : 2 के अनुपात में विभक्त करता है। रेखा का समीकरण ज्ञात कीजिए।


रेखा के समीकरण की संकल्पना का प्रयोग करते हुए सिद्ध कीजिए कि तीन बिंदु (3, 0), (−2, −2) और (8, 2) संरेख हैं।


निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:

x – y = 4


θ और p के मान ज्ञात कीजिए यदि समीकरण x cos θ + y sin θ = p रेखा `sqrt3`x + y + 2 = 0 का लंब रूप है।


रेखाओं y – x = 0, x + y = 0, और x – k = 0 से बने त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


यदि रेखाएँ y = 3x + 1 और 2y = x + 3, रेखा y = mx + 4, पर समान रूप से आनत हों तो m का मान ज्ञात कीजिए।


निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:

x + 7y = 0


निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:

6x + 3y – 5 = 0


निम्नलिखित समीकरण को अंतः खंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतः खंड ज्ञात कीजिए:

3x + 2y – 12 = 0


निम्नलिखित समीकरण को अंतः खंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतः खंड ज्ञात कीजिए:

4x – 3y = 6


निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:

`x - sqrt3y + 8 = 0`


निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:

y – 2 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×