Advertisements
Advertisements
प्रश्न
(−3, 5) से होकर जाने वाली और बिंदु (2, 5) और (−3, 6) से जाने वाली रेखा पर लंब रेखा का समीकरण ज्ञात कीजिए।
उत्तर
बिंदु A(2, 5) और B(−3, 6) से होकर जाने वाली रेखा का ढाल
`"m"_1 = ("y"_2 -"y"_1)/("x"_2 - "x"_1)`
= `(6 - 5)/(-3 -2)`
= `1/(-5)`
= `-1/5`
यदि PL बिन्दु P(–3, 5) से AB पर लंब डाला गया हो तो उसकी ढाल m2 मान लीजिए।
रेखाएँ PL और AB परस्पर लंब हैं।
यदि PL की ढाल × AB की ढाल = –1
अर्थात m2 × `(-1/5)` = −1
∴ m2 = 5
PL की ढाल 5 है और P(−3, 5) से होकर जाती है तो PL का समीकरण,
y – y1 = m2(x – x1)
या y – 5 = 5 (x + 3)
∴ 5x – y + 20 = 0
APPEARS IN
संबंधित प्रश्न
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
मूल बिंदु के बाईं ओर x-अक्ष को 3 इकाई की दूरी पर प्रतिच्छेद करने तथा ढाल – 2 वाली।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
मूल बिंदु से ऊपर y-अक्ष को 2 इकाई की दूरी पर प्रतिच्छेद करने वाली और x-अक्ष की धन दिशा के साथ 30° का कोण बनाने वाली।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
बिंदु `(2, 2sqrt3)` से जाने वाली और x-अक्ष से 75° के कोण पर झुकी हुई।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
बिंदुओं (−1, 1) और (2, –4) से जाते हुए।
रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
∆PQR के शीर्ष P(2, 1), Q(−2, 3) और R(4, 5) हैं। शीर्ष R से जाने वाली माध्यिका का समीकरण ज्ञात कीजिए।
एक रेखा का समीकरण ज्ञात कीजिए जो निर्देशांकों से समान अंत: खंड काटती है और बिंदु (2, 3) से जाती है।
बिंदु (0, 2) से जाने वाली और धन x-अक्ष से `(2π)/3` के कोण बनाने वाली रेखा का समीकरण ज्ञात कीजिए। इसके समांतर और y-अक्ष को मूल बिंदु से 2 इकाई नीचे की दूरी पर प्रतिच्छेद करती हुई रेखा का समीकरण भी ज्ञात कीजिए।
मूल बिंदु से किसी रेखा पर डाला गया लंब रेखा से बिंदु (−2, 9) पर मिलता है, रेखा का समीकरण ज्ञात कीजिए।
ताँबे की छड़ की लंबाई L (सेमी में) सेल्सियस ताप C का रैखिक फलन है। एक प्रयोग में यदि L = 124.942 जब C = 20 और L = 125.134 जब C = 110 हो, तो L को C के पदों में व्यक्त कीजिए।
किसी दूध भंडार का स्वामी प्रति सप्ताह 980 लिटर दूध, 14 रु. प्रति लिटर के भाव से और 1220 लिटर दूध 16 रु. प्रति लिटर के भाव से बेच सकता है। विक्रय मूल्य तथा मांग के मध्य के संबंध को रैखिक मानते हुए यह ज्ञात कीजिए कि प्रति सप्ताह वह कितना दूध 17 रु. प्रति लिटर के भाव से बेच सकता है?
अक्षों के बीच रेखाखंड का मध्य बिंदु P(a, b) है। दिखाइए कि रेखा का समीकरण `"x"/"a" + "y"/"b" = 2` हैं।
अक्षों के बीच रेखाखंड को बिंदु R(h, k), 1 : 2 के अनुपात में विभक्त करता है। रेखा का समीकरण ज्ञात कीजिए।
निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:
y = 0
निम्नलिखित समीकरण को अंतःखंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतःखंड ज्ञात कीजिए:
3y + 2 = 0
θ और p के मान ज्ञात कीजिए यदि समीकरण x cos θ + y sin θ = p रेखा `sqrt3`x + y + 2 = 0 का लंब रूप है।
रेखाओं y – x = 0, x + y = 0, और x – k = 0 से बने त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
किसी बिंदु के लिए रेखा को दर्पण मानते हुए बिंदु (3, 8) का रेखा x + 3y = 7 में प्रतिबिंब ज्ञात कीजिए।
यदि रेखाएँ y = 3x + 1 और 2y = x + 3, रेखा y = mx + 4, पर समान रूप से आनत हों तो m का मान ज्ञात कीजिए।
निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:
6x + 3y – 5 = 0
निम्नलिखित समीकरण को अंतः खंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतः खंड ज्ञात कीजिए:
3x + 2y – 12 = 0
निम्नलिखित समीकरण को अंतः खंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतः खंड ज्ञात कीजिए:
4x – 3y = 6
निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:
`x - sqrt3y + 8 = 0`
निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:
y – 2 = 0