हिंदी

मूल बिंदु से किसी रेखा पर डाला गया लंब रेखा से बिंदु (−2, 9) पर मिलता है, रेखा का समीकरण ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

मूल बिंदु से किसी रेखा पर डाला गया लंब रेखा से बिंदु (−2, 9) पर मिलता है, रेखा का समीकरण ज्ञात कीजिए।

योग

उत्तर

मान लीजिए रेखा AB पर मूल बिंदु से डाला गया लंब AB पर मिलता है।

OP की ढाल = `-("y"_2 - "y"_1)/("x"_2 - "x"_1)`

= `(9 - 0)/(-2 -0)`

= `-9/2`

परंतु AB ⊥ OP

∴ AB की ढाल = `- 1/("m"_1) = - 1/(-9/2) = 2/9`

अब AB की ढाल `2/9` है और P(−2, 9) से होकर जाती है।

∴ AB का समीकरण

y – y1 = m(x – x1)

अर्थात् y − 9 = `2/9 = ("x" + 2)`

या 9y – 81 = 2x + 4

या 2x – 9y + 85 = 0

shaalaa.com
रेखा के समीकरण के विविध रूप
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: सरल रेखाएँ - प्रश्नावली 10.2 [पृष्ठ २३४]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
अध्याय 10 सरल रेखाएँ
प्रश्नावली 10.2 | Q 15. | पृष्ठ २३४

संबंधित प्रश्न

निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

x-अक्ष और y-अक्ष के समीकरण लिखिए।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

ढाल `1/2` और बिंदु (−4, 3) से जाने वाली।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

बिंदु (0, 0) से जाने वाली और ढाल m वाली।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

मूल बिंदु के बाईं ओर x-अक्ष को 3 इकाई की दूरी पर प्रतिच्छेद करने तथा ढाल – 2 वाली।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

मूल बिंदु से ऊपर y-अक्ष को 2 इकाई की दूरी पर प्रतिच्छेद करने वाली और x-अक्ष की धन दिशा के साथ 30° का कोण बनाने वाली।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

बिंदुओं (−1, 1) और (2, –4) से जाते हुए।


उस रेखा का समीकरण ज्ञात कीजिए जिसकी मूल बिंदु से लांबिक दूरी 5 इकाई और लंब, धन x-अक्ष से 30° का कोण बनाती है।


एक रेखा (1, 0) तथा (2, 3) बिंदुओं को मिलाने वाली रेखा खंड पर लंब है तथा उसको 1 : n के अनुपात में विभाजित करती है। रेखा का समीकरण ज्ञात कीजिए।


बिंदु (2, 2) से जाने वाली रेखा का समीकरण ज्ञात कीजिए जिसके द्वारा अक्षों से कटे अंतः खंडों का योग 9 है।


अक्षों के बीच रेखाखंड का मध्य बिंदु P(a, b) है। दिखाइए कि रेखा का समीकरण `"x"/"a" + "y"/"b" = 2` हैं।


अक्षों के बीच रेखाखंड को बिंदु R(h, k), 1 : 2 के अनुपात में विभक्त करता है। रेखा का समीकरण ज्ञात कीजिए।


रेखा के समीकरण की संकल्पना का प्रयोग करते हुए सिद्ध कीजिए कि तीन बिंदु (3, 0), (−2, −2) और (8, 2) संरेख हैं।


निम्नलिखित समीकरण को अंतःखंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतःखंड ज्ञात कीजिए:

3y + 2 = 0


θ और p के मान ज्ञात कीजिए यदि समीकरण x cos θ + y sin θ = p रेखा `sqrt3`x + y + 2 = 0 का लंब रूप है।


रेखाओं y – x = 0, x + y = 0, और x – k = 0 से बने त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


रेखाओं 4x + 7y – 3 = 0 और 2x – 3y + 1 = 0 के प्रतिच्छेद बिंदु से जाने वाली रेखा का समीकरण ज्ञात कीजिए जो अक्षों से समान अंतः खंड बनाती हैं।


किसी बिंदु के लिए रेखा को दर्पण मानते हुए बिंदु (3, 8) का रेखा x + 3y = 7 में प्रतिबिंब ज्ञात कीजिए।


निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:

x + 7y = 0


निम्नलिखित समीकरण को अंतः खंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतः खंड ज्ञात कीजिए:

4x – 3y = 6


निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:

`x - sqrt3y + 8 = 0`


निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:

y – 2 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×