हिंदी

Answer the following question: Obtain the equation of the line containing the point (2, 3) and parallel to the X-axis. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following question:

Obtain the equation of the line containing the point (2, 3) and parallel to the X-axis.

योग

उत्तर

The equation of the line parallel to X-axis is of the type y = b. If this contains the point (2, 3), then the coordinates of this point satisfy this equation.

∴ b = 3

∴ the equation of the line parallel to X-axis and containing the point (2, 3) is y = 3.

shaalaa.com
Equations of Line in Different Forms
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Straight Line - Miscellaneous Exercise 5 [पृष्ठ १२५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 5 Straight Line
Miscellaneous Exercise 5 | Q II. (7) (i) | पृष्ठ १२५

संबंधित प्रश्न

Obtain the equation of the line :

parallel to the Y−axis and making an intercept of 4 unit on the X−axis


Obtain the equation of the line containing the point :

B(4, –3) and parallel to the X-axis


Find the equation of the line passing through the points A(2, 0), and B(3, 4)


Find the equation of the line containing the origin and having inclination 60°


Find the equation of the line passing through the origin and parallel to AB, where A is (2, 4) and B is (1, 7)


Find the equation of the line having slope `1/2` and containing the point (3, −2).


Find the equation of the line containing point A(3, 5) and having slope `2/3`.


Find the equation of the line containing point A(4, 3) and having inclination 120°


Find the equation of the line passing through the origin and which bisects the portion of the line 3x + y = 6 intercepted between the co-ordinate axes.


Find the x and y intercept of the following line:

`x/3 + y/2` = 1


Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).


Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).


Select the correct option from the given alternatives:

The equation of the line through (1, 2), which makes equal intercepts on the axes, is


Answer the following question:

Find the equation of the line having slope 5 and containing point A(–1, 2).


Answer the following question:

Find the equation of the line through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co−ordinate axes.


Answer the following question:

Find the equation of the line passing through the points S(2, 1) and T(2, 3)


Answer the following question:

Find the equation of the line which contains the point A(3, 5) and makes equal intercepts on the co-ordinates axes.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the medians.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of altitudes of ∆ABC


Answer the following question:

Find the equation of the line through A(−2, 3) and perpendicular to the line through S(1, 2) and T(2, 5)


Answer the following question:

Two lines passing through M(2, 3) intersect each other at an angle of 45°. If slope of one line is 2, find the equation of the other line.


Answer the following question:

Find the equations of the diagonals of the rectangle whose sides are contained in the lines x = 8, x = 10, y = 11 and y = 12


Answer the following question:

The vertices of ∆PQR are P(2, 1), Q(−2, 3) and R(4, 5). Find the equation of the median through R.


Answer the following question:

A line perpendicular to segment joining A(1, 0) and B(2, 3) divides it internally in the ratio 1 : 2. Find the equation of the line.


Answer the following question:

The perpendicular from the origin to a line meets it at (−2, 9). Find the equation of the line.


Answer the following question:

Show that there is only one line which passes through B(5, 5) and the sum of whose intercept is zero.


If for a plane, the intercepts on the co-ordinate axes are 8, 4, 4, then the length of the perpendicular from the origin to the plane is ______


The slope of normal to the curve x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`at t = 4 is _____.


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


Suppose the line `(x - 2)/α = ("y" - 2)/(-5) = ("z" + 2)/2` lies on the plane x + 3y – 2z + β = 0. Then (α + β) is equal to ______.


Let the perpendiculars from any point on the line 7x + 56y = 0 upon 3x + 4y = 0 and 5x – 12y = 0 be p and p', then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.