Advertisements
Advertisements
प्रश्न
Calculate the median for the following data:
Class | 19 – 25 | 26 – 32 | 33 – 39 | 40 – 46 | 47 – 53 | 54 - 60 |
Frequency | 35 | 96 | 68 | 102 | 35 | 4 |
उत्तर
First, we will convert the data into exclusive form.
Class | Frequency (f) | Cumulative Frequency (cf) |
18.5 – 25.5 | 35 | 35 |
25.5 – 32.5 | 96 | 131 |
32.5 – 39.5 | 68 | 199 |
39.5 – 46.5 | 102 | 301 |
46.5 – 53.5 | 35 | 336 |
53.5 – 60.5 | 4 | 340 |
N = Σ𝑓 = 340 |
Now, N = 340
`⇒ N/2 = 170`.
The cumulative frequency just greater than 170 is 199 and the corresponding class is 32.5 – 39.5.
Thus, the median class is 32.5 – 39.5.
∴ l = 32.5, h = 7, f = 68, cf = c.f. of preceding class = 131 and `N/2` = 170.
∴ Median, `M = l + {h×((N/2−cf)/f)}`
`= 32.5 + {7 × ((170 − 131)/68)}`
= 32.5 + 4.01
= 36.51
Hence, the median = 36.51.
APPEARS IN
संबंधित प्रश्न
The following is the distribution of height of students of a certain class in a certain city:
Height (in cm): | 160 - 162 | 163 - 165 | 166 - 168 | 169 - 171 | 172 - 174 |
No. of students: | 15 | 118 | 142 | 127 | 18 |
Find the median height.
An incomplete distribution is given below:
Variable: | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Frequency: | 12 | 30 | - | 65 | - | 25 | 18 |
You are given that the median value is 46 and the total number of items is 230.
(i) Using the median formula fill up missing frequencies.
(ii) Calculate the AM of the completed distribution.
In a hospital, the ages of diabetic patients were recorded as follows. Find the median age.
Age (in years) |
0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 - 75 |
No. of patients | 5 | 20 | 40 | 50 | 25 |
The annual rainfall record of a city for 66 days is given in the following table :
Rainfall (in cm ): | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Number of days : | 22 | 10 | 8 | 15 | 5 | 6 |
Calculate the median rainfall using ogives of more than type and less than type.
Write the median class of the following distribution:
Class-interval: | 0−10 | 10−20 | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 |
Frequency: | 4 | 4 | 8 | 10 | 12 | 8 | 4 |
Find the median of the following frequency distribution:
x | 10 | 11 | 12 | 13 | 14 | 15 |
f | 1 | 4 | 7 | 5 | 9 | 3 |
Calculate the median of marks of students for the following distribution:
Marks | Number of students |
More than or equal to 0 | 100 |
More than or equal to 10 | 93 |
More than or equal to 20 | 88 |
More than or equal to 30 | 70 |
More than or equal to 40 | 59 |
More than or equal to 50 | 42 |
More than or equal to 60 | 34 |
More than or equal to 70 | 20 |
More than or equal to 80 | 11 |
More than or equal to 90 | 4 |
Heights of 50 students of class X of a school are recorded and following data is obtained:
Height (in cm) | 130 – 135 | 135 – 140 | 140 – 145 | 145 – 150 | 150 – 155 | 155 – 160 |
Number of students | 4 | 11 | 12 | 7 | 10 | 6 |
Find the median height of the students.
Yoga is an ancient practice which is a form of meditation and exercise. By practising yoga, we not even make our body healthy but also achieve inner peace and calmness. The International Yoga Day is celebrated on the 21st of June every year since 2015. |
Age Group | 15 – 25 | 25 – 35 | 35 – 45 | 45 –55 | 55 –65 | 65 –75 | 75 – 85 |
Number of People |
8 | 10 | 15 | 25 | 40 | 24 | 18 |
Based on the above, find the following:
- Find the median age of people enrolled for the camp.
- If x more people of the age group 65 – 75 had enrolled for the camp, the mean age would have been 58. Find the value of x.
The median of first seven prime numbers is ______.