हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Calculate the Speed of Sound in Oxygen from the Following Data. the Mass of 22.4 Litre of Oxygen at Stp (T = 273 K and P = 1.0 × 105 N M−2) is 32 G - Physics

Advertisements
Advertisements

प्रश्न

Calculate the speed of sound in oxygen from the following data. The mass of 22.4 litre of oxygen at STP (T = 273 K and p = 1.0 × 105 N m−2) is 32 g, the molar heat capacity of oxygen at constant volume is Cv = 2.5 R and that at constant pressure is Cp = 3.5 R.

योग

उत्तर

Given:
Pressure of oxygen  = 1.0 × 105 Nm−2
Temperature = 273 K
Mass of oxygen = 32 g
Volume of oxygen = 22.4 litre = 22.4\[\times  {10}^{- 3}  m^3\]

Molar heat capacity of oxygen at constant volume Cv = 2.5 R
Molar heat capacity of oxygen at constant pressure Cp = 3.5 R
Density of oxygen \[\rho = \frac{M}{V} = \frac{32  g}{22 . 4 \times {10}^{- 3} m^3}\]

\[We  know  that: \] 

\[\frac{C_p}{C_v} = \gamma\] 

\[ \therefore   \gamma = \frac{3 . 5  R}{2 . 5  R} = 1 . 4\] 

\[\text { Velocity  of  sound  is  given  by: }\] 

\[  v = \sqrt{\frac{\gamma p}{\rho},}\] 

\[\text { where  v  is  the  speed  of  sound . }\] \[\text { On  substituting  the  respective  values  in  the  above  formula,   we  get: }\] 

\[  v = \frac{1 . 4 \times 1 . 0 \times {10}^5}{\left( \frac{32}{22 . 4} \right)}\] 

\[ \Rightarrow v = 310  \text { m/s }\]

Therefore, the speed of sound in oxygen is 310 m/s.

 
shaalaa.com
Speed of Wave Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Sound Waves - Exercise [पृष्ठ ३५३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 16 Sound Waves
Exercise | Q 11 | पृष्ठ ३५३

संबंधित प्रश्न

Both the strings, shown in figure, are made of same material and have same cross section. The pulleys are light. The wave speed of a transverse wave in the string AB is
\[\nu_1\]  and in CD it is \[\nu_2\]. Then \[\nu_1 / \nu_2\]


The fundamental frequency of a string is proportional to


following Figure shows a wave pulse at t = 0. The pulse moves to the right with a speed of 10 cm s−1. Sketch the shape of the string at t = 1 s, 2 s and 3 s.


Two particles A and B have a phase difference of π when a sine wave passes through the region.
(a) A oscillates at half the frequency of B.
(b) A and B move in opposite directions.
(c) A and B must be separated by half of the wavelength.
(d) The displacements at A and B have equal magnitudes.


The speed of sound in a medium depends on


A piano wire weighing 6⋅00 g and having a length of 90⋅0 cm emits a fundamental frequency corresponding to the "Middle C" \[\left( \nu = 261 \cdot 63  Hz \right)\]. Find the tension in the wire.


In Quincke's experiment, the sound intensity has a minimum value l at a particular position. As the sliding  tube is pulled out by a distance of 16.5 mm, the intensity increases to a maximum of 9 l. Take the speed of sound in air to be 330 m s−1. (a) Find the frequency of the sound source. (b) Find the ratio of the amplitudes of the two waves arriving at the detector assuming that it does not change much between the positions of minimum intensity and maximum intensity.


Two audio speakers are kept some distance apart and are driven by the same amplifier system. A person is sitting at a place 6.0 m from one of the speakers and 6.4 m from the other. If the sound signal is continuously varied from 500 Hz to 5000 Hz, what are the frequencies for which there is a destructive interference at the place of the listener? Speed of sound in air = 320 m s−1.


A closed organ pipe can vibrate at a minimum frequency of 500 Hz. Find the length of the tube. Speed of sound in air = 340 m s−1.


In a resonance column experiment, a tuning fork of frequency 400 Hz is used. The first resonance is observed when the air column has a length of 20.0 cm and the second resonance is observed when the air column has a length of 62.0 cm. (a) Find the speed of sound in air. (b) How much distance above the open end does the pressure node form?


An open organ pipe has a length of 5 cm. (a) Find the fundamental frequency of vibration of this pipe. (b) What is the highest harmonic of such a tube that is in the audible range? Speed of sound in air is 340 m s−1 and the audible range is 20-20,000 Hz.


A piston is fitted in a cylindrical tube of small cross section with the other end of the tube open. The tube resonates with a tuning fork of frequency 512 Hz. The piston is gradually pulled out of the tube and it is found that a second resonance occurs when the piston is pulled out through a distance of 32.0 cm. Calculate the speed of sound in the air of the tube.


A Kundt's tube apparatus has a steel rod of length 1.0 m clamped at the centre. It is vibrated in its fundamental mode at a frequency of 2600 Hz. The lycopodium powder dispersed in the tube collects into heaps separated by 6.5 cm. Calculate the speed of sound in steel and in air.


A train approaching a platform at a speed of 54 km h−1 sounds a whistle. An observer on the platform finds its frequency to be 1620 Hz. the train passes the platform keeping the whistle on and without slowing down. What frequency will the observer hear after the train has crossed the platform? The speed of sound in air = 332 m s−1.


A bat emitting an ultrasonic wave of frequency 4.5 × 104 Hz flies at a speed of 6 m s−1between two parallel walls. Find the fractional heard by the bat and the beat frequencies heard by the bat and the beat frequency between the two. The speed of sound is 330 m s−1.


A bullet passes past a person at a speed of 220 m s−1. Find the fractional change in the frequency of the whistling sound heard by the person as the bullet crosses the person. Speed of sound in air = 330 m s−1.


A violin player riding on a slow train plays a 440 Hz note. Another violin player standing near the track plays the same note. When the two are closed by and the train approaches the person on the ground, he hears 4.0 beats per second. The speed of sound in air = 340 m s−1. (a) Calculate the speed of the train. (b) What beat frequency is heard by the player in the train?


A car moving at 108 km h−1 finds another car in front it going in the same direction at 72 km h−1. The first car sounds a horn that has a dominant frequency of 800 Hz. What will be the apparent frequency heard by the driver in the front car? Speed of sound in air = 330 m s−1.


The speed of a transverse wave in an elastic string is v0. If the tension in the string is reduced to half, then the speed of the wave is given by:


Two tuning forks having frequencies 320 Hz and 340 Hz are sounded together to produce sound waves. The velocity of sound in air is 340 m/s. Find the difference in wavelength of these waves. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×