हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Consider the Situation Shown in Figure. If the Switch is Closed and After Some Time It is Opened Again, the Closed Loop Will Show - Physics

Advertisements
Advertisements

प्रश्न

Consider the situation shown in figure. If the switch is closed and after some time it is opened again, the closed loop will show ____________ .

विकल्प

  • an anticlockwise current-pulse

  • a clockwise current-pulse

  • an anticlockwise current-pulse and then a clockwise current-pulse

  • a clockwise current-pulse and then an anticlockwise current-pulse

MCQ
रिक्त स्थान भरें

उत्तर

a clockwise current-pulse and then an anticlockwise current-pulse

 

When the switch is closed, the current will flow in downward direction in part AB of the circuit nearest to the closed loop.

Due to current in wire AB, a magnetic field will be produced in the loop. This magnetic field due to increasing current will be the cause of the induced current in the closed loop. According to Lenz's law, the induced current is such that it opposes the increase in the magnetic field that induces it. So, the induced current will be in clockwise direction opposing the increase in the magnetic field in upward direction.

Similarly, when the circuit is opened, the current will suddenly fall in the circuit, leading to decrease in the magnetic field in the loop. Again, according to Lenz's law, the induced current is such that it opposes the decrease in the magnetic field. So, the induced current will be in anti-clockwise direction, opposing the decrease in the magnetic field in upward direction.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Electromagnetic Induction - MCQ [पृष्ठ ३०४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 16 Electromagnetic Induction
MCQ | Q 3 | पृष्ठ ३०४

संबंधित प्रश्न

Predict the directions of induced currents in metal rings 1 and 2 lying in the same plane where current I in the wire is increasing steadily.


Predict the direction of induced current in a metal ring when the ring is moved towards a straight conductor with constant speed v. The conductor is carrying current I in the direction shown in the figure.


Predict the direction of induced current in metal rings 1 and 2 when current I in the wire is steadily decreasing?


A pivoted aluminium bar falls much more slowly through a small region containing a magnetic field than a similar bar of an insulating material. Explain.


A bar magnet is moved along the axis of a copper ring placed far away from the magnet. Looking from the side of the magnet, an anticlockwise current is found to be induced in the ring. Which of the following may be true?
(a) The south pole faces the ring and the magnet moves towards it.
(b) The north pole faces the ring and the magnet moves towards it.
(c) The south pole faces the ring and the magnet moves away from it.
(d) The north pole faces the ring and the magnet moves away from it.


Consider the situation shown in figure. If the closed loop is completely enclosed in the circuit containing the switch, the closed loop will show _______________ .


Lenz’s law is a consequence of the law of conservation of ______.


Len’z law provides a relation between ______.

The polarity of induced emf is given by ______.

Young's modulus for aluminium is 7 × 1010 Pa. The force needed to stretch an aluminium wire of diameter 2 mm and length 800 mm by 1 mm is ______.


For a coil having L = 2 mH, current flows at the rate of 10-3 AIS. The e.m.f induced is


Lenz's law gives ______


There are two coils A and B as shown in figure. A current starts flowing in B as shown, when A is moved towards B and stops when A stops moving. The current in A is counterclockwise. B is kept stationary when A moves. We can infer that ______.


Consider a metal ring kept (supported by a cardboard) on top of a fixed solenoid carrying a current I (Figure). The centre of the ring coincides with the axis of the solenoid. If the current in the solenoid is switched off, what will happen to the ring?


A conducting wire XY of mass m and neglibile resistance slides smoothly on two parallel conducting wires as shown in figure. The closed circuit has a resistance R due to AC. AB and CD are perfect conductors. There is a ˆ. magnetic field `B = B(t)hatk`.

  1. Write down equation for the acceleration of the wire XY.
  2. If B is independent of time, obtain v(t) , assuming v(0) = u0.
  3. For (b), show that the decrease in kinetic energy of XY equals the heat lost in R.

A long solenoid ‘S’ has ‘n’ turns per meter, with diameter ‘a’. At the centre of this coil we place a smaller coil of ‘N’ turns and diameter ‘b’ (where b < a). If the current in the solenoid increases linearly, with time, what is the induced emf appearing in the smaller coil. Plot graph showing nature of variation in emf, if current varies as a function of mt2 + C.


Predict the direction of induced current in the situation described by the following figure.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×