Advertisements
Advertisements
प्रश्न
`"d"/"dx" (1/x)` is equal to:
विकल्प
-\[\frac{1}{x^2}\]
-\[\frac{1}{x}\]
log x
\[\frac{1}{x^2}\]
MCQ
उत्तर
-\[\frac{1}{x^2}\]
shaalaa.com
Limits and Derivatives
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Show that f(x) = |x| is continuous at x = 0.
Find the derivative of the following function from the first principle.
log(x + 1)
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to:
`"d"/"dx"` (5ex – 2 log x) is equal to:
If y = log x then y2 =