Advertisements
Advertisements
प्रश्न
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
उत्तर
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
= \[\frac{2^3 + 2}{2 + 1}\]
= \[\frac{8 + 2}{3}\]
= \[\frac{10}{3}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Verify the continuity and differentiability of f(x) = `{(1 - x if x < 1),((1 - x)(2 - x) if 1 <= x <= 2),(3 - x if x > 2):}` at x = 1 and x = 2.
`lim_(theta->0) (tan theta)/theta` =
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
If y = x and z = `1/x` then `"dy"/"dx"` =