Advertisements
Advertisements
प्रश्न
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
उत्तर
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
= \[\lim_{x->∞} \frac{x(2 + \frac{5}x)}{(1 + \frac{3}{x} + \frac{9}{x^2})}\]
[Takeout x from numerator and take x2 from the denominator]
= \[\lim_{x->∞} \frac{1}{x} \frac{(2 + \frac{5}x)}{(1 + \frac{3}{x} + \frac{9}{x^2})}\]
= `0 ((2 + 0)/(1 + 0 + 0))`
= 0
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Find the derivative of the following function from the first principle.
ex
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
Verify the continuity and differentiability of f(x) = `{(1 - x if x < 1),((1 - x)(2 - x) if 1 <= x <= 2),(3 - x if x > 2):}` at x = 1 and x = 2.
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to:
`"d"/"dx" ("a"^x)` =