Advertisements
Advertisements
प्रश्न
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
उत्तर
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
`["Divide both numerator and denominator by x – a"; lim_(x->a) (x^n - a^n)/(x - a) = na^n]`
= `(lim_(x->a)(x^(5/8)-a^(5/8))/(x-a))/(lim_(x->a)(x^(2/3)-a^(2/3))/(x-a))`
`= (5/8 a^(5/8 - 1))/(2/3 a^(2/3 - 1))`
`= 5/8 xx 3/2 xx ("a"^((-3)/8))/("a"^((-1)/3))`
`= 15/16 xx "a"^(-1/24)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Show that f(x) = |x| is continuous at x = 0.
Find the derivative of the following function from the first principle.
x2
Find the derivative of the following function from the first principle.
ex
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
For what value of x, f(x) = `(x+2)/(x-1)` is not continuous?
`"d"/"dx" (1/x)` is equal to: