Advertisements
Advertisements
प्रश्न
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
उत्तर
`"L"["f"(x)]_(x=0) = lim_(x->0^-) "f"(x) = lim_(h->0) "f"(0 - "h")`
`= lim_(h->0) "f"(-"h") = lim_(h->0) ((-"h") - |- "h"|)/(-"h")`
`= lim_(h->0) (- "h" - "h")/(- "h")`
`= lim_(h->0) (-2cancel("h"))/(-cancel(h))`
`= lim_(h->0) 2` = 2 ...[∵ |- h| = h] ...(1)
`"R"["f"(x)]_(x=0) = lim_(x->0) "f"(x) = lim_(x->0) "f"(0 + "h")`
`= lim_(h->0)` f(h)
`= lim_(h->0) ("h" - |"h"|)/"h"`
`= lim_(h->0) ("h - h")/"h"`
`= lim_(h->0) 0/"h"` = 0 ...(2)
From (1) and (2),
`"L"["f"(x)]_(x=0) ne "R"["f"(x)]_(x=0)`
`therefore lim_(x-> ∞) "f"(x)` does not exist.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Find the derivative of the following function from the first principle.
x2
Find the derivative of the following function from the first principle.
log(x + 1)
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
`"d"/"dx"` (5ex – 2 log x) is equal to:
If y = e2x then `("d"^2"y")/"dx"^2` at x = 0 is: