Advertisements
Advertisements
प्रश्न
Find the derivative of the following function from the first principle.
x2
उत्तर
Let f(x) = x2 then f(x + h) = (x + h)2
Now `"d"/"dx"`f(x)
`= lim_(h->0) ("f"(x + "h") - "f"(x))/"h"`
`= lim_(h->0) ((x + "h")^2 - x^2)/"h"`
`= lim_(h->0) (x^2 + "h"^2 + 2"h"x - x^2)/"h"`
`= lim_(h->0) ("h"^2 + 2"h"x)/"h"`
`= lim_(h->0) ("h"("h" + 2x))/"h"`
`= lim_(h->0)` h + 2x
= 0 + 2x = 2x
Thus `"d"/"dx" (x^2)` = 2x
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Show that the function f(x) = 2x - |x| is continuous at x = 0
Verify the continuity and differentiability of f(x) = `{(1 - x if x < 1),((1 - x)(2 - x) if 1 <= x <= 2),(3 - x if x > 2):}` at x = 1 and x = 2.
`lim_(theta->0) (tan theta)/theta` =
`"d"/"dx" ("a"^x)` =