Advertisements
Advertisements
प्रश्न
Find the derivative of the following function from the first principle.
ex
उत्तर
Let f(x) = e-x then f(x + h) = `e^(-(x+h))`
Now `"d"/"dx"` f(x)
`= lim_(h->0) ("f"(x + "h") - "f"(x))/"h"`
`= lim_(h->0) (e^(-x-"h") - e^(-x))/"h"`
`= lim_(h->0) (e^(-x) * e^(-h) - e^(-x))/"h"`
`= lim_(h->0) e^(-x) ((e^(-h) - 1)/"h")`
`= e^(-x) lim_(h->0) ((1/e^"h" - 1)/"h")`
`= e^(-x) lim_(h->0) ((1 - e^"h")/(e^"h""h"))`
`= e^(-x) lim_(h->0) (- (e^"h" - 1)/(e^"h""h"))`
`= e^(-x) lim_(h->0) (1/e^"h" xx (e^"h" - 1)/"h")`
`= -e^(-x) 1/e^0 xx 1`
`[because lim_(x->0) (e^x - 1)/x = 1]`
`"d"/"dx"` f(x) = `- e^-x`
`therefore "d"/"dx" (e^-x) = - e^-x`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
Show that the function f(x) = 2x - |x| is continuous at x = 0
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
`lim_(theta->0) (tan theta)/theta` =
`"d"/"dx"` (5ex – 2 log x) is equal to:
If y = x and z = `1/x` then `"dy"/"dx"` =