हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा ११

Find the derivative of the following function from the first principle. ex - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function from the first principle.

ex

योग

उत्तर

Let f(x) = e-x then f(x + h) = `e^(-(x+h))`

Now `"d"/"dx"` f(x)

`= lim_(h->0) ("f"(x + "h") - "f"(x))/"h"`

`= lim_(h->0) (e^(-x-"h") - e^(-x))/"h"`

`= lim_(h->0) (e^(-x) * e^(-h) - e^(-x))/"h"`

`= lim_(h->0) e^(-x) ((e^(-h) - 1)/"h")`

`= e^(-x) lim_(h->0) ((1/e^"h" - 1)/"h")`

`= e^(-x) lim_(h->0) ((1 - e^"h")/(e^"h""h"))`

`= e^(-x) lim_(h->0) (- (e^"h" - 1)/(e^"h""h"))`

`= e^(-x) lim_(h->0) (1/e^"h" xx (e^"h" - 1)/"h")`

`= -e^(-x) 1/e^0 xx 1`

`[because lim_(x->0) (e^x - 1)/x = 1]`

`"d"/"dx"` f(x) = `- e^-x`

`therefore "d"/"dx" (e^-x) = - e^-x`

shaalaa.com
Limits and Derivatives
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Differential Calculus - Exercise 5.4 [पृष्ठ ११५]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
अध्याय 5 Differential Calculus
Exercise 5.4 | Q 1. (ii) | पृष्ठ ११५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×