Advertisements
Advertisements
प्रश्न
Find the derivative of the following function from the first principle.
ex
उत्तर
Let f(x) = e-x then f(x + h) = `e^(-(x+h))`
Now `"d"/"dx"` f(x)
`= lim_(h->0) ("f"(x + "h") - "f"(x))/"h"`
`= lim_(h->0) (e^(-x-"h") - e^(-x))/"h"`
`= lim_(h->0) (e^(-x) * e^(-h) - e^(-x))/"h"`
`= lim_(h->0) e^(-x) ((e^(-h) - 1)/"h")`
`= e^(-x) lim_(h->0) ((1/e^"h" - 1)/"h")`
`= e^(-x) lim_(h->0) ((1 - e^"h")/(e^"h""h"))`
`= e^(-x) lim_(h->0) (- (e^"h" - 1)/(e^"h""h"))`
`= e^(-x) lim_(h->0) (1/e^"h" xx (e^"h" - 1)/"h")`
`= -e^(-x) 1/e^0 xx 1`
`[because lim_(x->0) (e^x - 1)/x = 1]`
`"d"/"dx"` f(x) = `- e^-x`
`therefore "d"/"dx" (e^-x) = - e^-x`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
Show that f(x) = |x| is continuous at x = 0.
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
`"d"/"dx" (1/x)` is equal to:
If y = x and z = `1/x` then `"dy"/"dx"` =
If y = e2x then `("d"^2"y")/"dx"^2` at x = 0 is:
`"d"/"dx" ("a"^x)` =