Advertisements
Advertisements
प्रश्न
Show that f(x) = |x| is continuous at x = 0.
उत्तर
Given that f(x) = |x| = `{(x if x >= 2),(- x if x < 0):}`
`"L"["f"(x)]_(x=0) = lim_(x->0^-)`f(x)
[∵ x = 0 – h]
`= lim_(h->0^-) "f"(0 - "h")`
`= lim_(h->0^-) "f"(- "h")`
`= lim_(h->0^-) |- "h"|`
`= lim_(h->0^-) |"h"|`
`= lim_(h->0^-) "h" = 0`
`"R"["f"(x)]_(x=0^+) = lim_(x->0^+)`f(x)
`= lim_(h->0^+) "f"(0 - "h")`
`= lim_(h->0^+) "f"("h")`
`= lim_(h->0^+) |"h"|`
`= lim_(h->0) "h"`
= 0
[∵ |x| = x if x > 0]
Also f(0) = |0| = 0
`lim_(x->0^-) "f"(x) = lim_(x->0^+ "f"(x))` = f(0)
∴ f(x) is continuous at x = 0.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Find the derivative of the following function from the first principle.
x2
Find the derivative of the following function from the first principle.
ex
Show that the function f(x) = 2x - |x| is continuous at x = 0
If y = x and z = `1/x` then `"dy"/"dx"` =
`"d"/"dx" ("a"^x)` =