Advertisements
Advertisements
Question
Show that f(x) = |x| is continuous at x = 0.
Solution
Given that f(x) = |x| = `{(x if x >= 2),(- x if x < 0):}`
`"L"["f"(x)]_(x=0) = lim_(x->0^-)`f(x)
[∵ x = 0 – h]
`= lim_(h->0^-) "f"(0 - "h")`
`= lim_(h->0^-) "f"(- "h")`
`= lim_(h->0^-) |- "h"|`
`= lim_(h->0^-) |"h"|`
`= lim_(h->0^-) "h" = 0`
`"R"["f"(x)]_(x=0^+) = lim_(x->0^+)`f(x)
`= lim_(h->0^+) "f"(0 - "h")`
`= lim_(h->0^+) "f"("h")`
`= lim_(h->0^+) |"h"|`
`= lim_(h->0) "h"`
= 0
[∵ |x| = x if x > 0]
Also f(0) = |0| = 0
`lim_(x->0^-) "f"(x) = lim_(x->0^+ "f"(x))` = f(0)
∴ f(x) is continuous at x = 0.
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Find the derivative of the following function from the first principle.
x2
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
Show that the function f(x) = 2x - |x| is continuous at x = 0
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
`"d"/"dx" (1/x)` is equal to: