Advertisements
Advertisements
Question
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
Solution
`lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
`= lim_(x->1) ((2x - 3)(sqrtx - 1))/((2x + 3)(x - 1))` ..`- 6 {(3/2 = 2x + 3),((-2)/2 = x - 1):}`
`= lim_(x->1) ((2x - 3)(sqrtx - 1))/((2x + 3)(sqrtx - 1)(sqrtx + 1))` ...[∵ a2 - b2 = (a + b)(a - b)]
`= lim_(x->1) (2x - 3)/((2x + 3)(sqrtx + 1))`
`= (2(1) - 3)/([2(1) + 3][sqrt1 + 1])`
`= (-1)/((5)(2))`
`= (-1)/10`
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
Show that f(x) = |x| is continuous at x = 0.
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
Verify the continuity and differentiability of f(x) = `{(1 - x if x < 1),((1 - x)(2 - x) if 1 <= x <= 2),(3 - x if x > 2):}` at x = 1 and x = 2.
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
`lim_(theta->0) (tan theta)/theta` =
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to:
`"d"/"dx"` (5ex – 2 log x) is equal to:
If y = log x then y2 =