Advertisements
Advertisements
Question
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
Solution
`lim_(x->∞) (sum "n")/"n"^2`
= `lim_(x->∞) (("n"("n"+1))/2)/"n"^2`
= `lim_(x->∞) ("n"^2(1 + 1/"n"))/(2"n"^2)`
= `lim_(x->∞) 1/2(1 + 1/"n")`
= `1/2 (1+1/∞)`
`= 1/2`(1 + 0)
`= 1/2`
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Show that f(x) = |x| is continuous at x = 0.
Find the derivative of the following function from the first principle.
x2
Find the derivative of the following function from the first principle.
ex
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
If y = log x then y2 =