Advertisements
Advertisements
Question
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
Solution
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
= \[\lim_{x->∞} \frac{x(2 + \frac{5}x)}{(1 + \frac{3}{x} + \frac{9}{x^2})}\]
[Takeout x from numerator and take x2 from the denominator]
= \[\lim_{x->∞} \frac{1}{x} \frac{(2 + \frac{5}x)}{(1 + \frac{3}{x} + \frac{9}{x^2})}\]
= `0 ((2 + 0)/(1 + 0 + 0))`
= 0
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to:
If y = x and z = `1/x` then `"dy"/"dx"` =