Advertisements
Advertisements
प्रश्न
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
उत्तर
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
= \[\lim_{x->∞} \frac{x(2 + \frac{5}x)}{(1 + \frac{3}{x} + \frac{9}{x^2})}\]
[Takeout x from numerator and take x2 from the denominator]
= \[\lim_{x->∞} \frac{1}{x} \frac{(2 + \frac{5}x)}{(1 + \frac{3}{x} + \frac{9}{x^2})}\]
= `0 ((2 + 0)/(1 + 0 + 0))`
= 0
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Show that f(x) = |x| is continuous at x = 0.
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
`lim_(theta->0) (tan theta)/theta` =
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
For what value of x, f(x) = `(x+2)/(x-1)` is not continuous?
If y = e2x then `("d"^2"y")/"dx"^2` at x = 0 is: