Advertisements
Advertisements
प्रश्न
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
उत्तर
`lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
`= lim_(x->1) ((2x - 3)(sqrtx - 1))/((2x + 3)(x - 1))` ..`- 6 {(3/2 = 2x + 3),((-2)/2 = x - 1):}`
`= lim_(x->1) ((2x - 3)(sqrtx - 1))/((2x + 3)(sqrtx - 1)(sqrtx + 1))` ...[∵ a2 - b2 = (a + b)(a - b)]
`= lim_(x->1) (2x - 3)/((2x + 3)(sqrtx + 1))`
`= (2(1) - 3)/([2(1) + 3][sqrt1 + 1])`
`= (-1)/((5)(2))`
`= (-1)/10`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Find the derivative of the following function from the first principle.
x2
Find the derivative of the following function from the first principle.
ex
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
If y = x and z = `1/x` then `"dy"/"dx"` =