Advertisements
Advertisements
प्रश्न
Show that the function f(x) = 2x - |x| is continuous at x = 0
उत्तर
`"L" ["f"(x)]_(x=0) = lim_(x->0^-) "f"(x) = lim_(h->0) "f"(0-"h")`
`= lim_(h->0) "f"(-"h")`
`= lim_(h->0) 2 (-"h") - |"h"|`
`= lim_(h->0) - 2"h" - "h"`
`= lim_(h->0) -3"h"`
= - 3(0) = 0 ....(1)
`"R" ["f"(x)]_(x=0) = lim_(x->0^+) "f"(x) = lim_(h->0^+) "f"(0 + "h")`
= `lim_(h->0) "f"("h") = lim_(h->0) 2"h" - |"h"|`
= `lim_(h->0) 2"h" - "h"`
= `lim_(h->0) "h" = 0` ...(2)
Also f(0) = 2(0) - |0| = 0
From (1), (2) and (3),
`"L" ["f"(x)]_(x=0) = "R" ["f"(x)]_(x=0)` = f(0) = 0
∴ f(x) = 2x - |x| is continuous at x = 0.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Find the derivative of the following function from the first principle.
x2
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
`lim_(theta->0) (tan theta)/theta` =
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
`"d"/"dx"` (5ex – 2 log x) is equal to:
If y = log x then y2 =