Advertisements
Advertisements
प्रश्न
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
उत्तर
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
= `lim_(x->0) (sqrt(1+x) - sqrt(1-x))/(5x) xx ((sqrt(1+x) + sqrt(1-x))/(sqrt(1+x) + sqrt(1-x)))`
= `lim_(x->0) ((1+x)-(1-x))/(5x(sqrt(1+x) + sqrt(1-x)))`
= `lim_(x->0) ((1+x-1+x))/(5x(sqrt(1+x) + sqrt(1-x)))`
= `lim_(x->0) (2x)/(5x(sqrt(1+x) + sqrt(1-x)))`
= `lim_(x->0) (2)/(5(sqrt(1+0) + sqrt(1-0)))`
`= 2/(5(1+1)) = 1/5`
APPEARS IN
संबंधित प्रश्न
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Find the derivative of the following function from the first principle.
x2
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
`lim_(theta->0) (tan theta)/theta` =
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
`"d"/"dx" (1/x)` is equal to:
If y = e2x then `("d"^2"y")/"dx"^2` at x = 0 is: