Advertisements
Advertisements
प्रश्न
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
उत्तर
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
`["Divide both numerator and denominator by x – a"; lim_(x->a) (x^n - a^n)/(x - a) = na^n]`
= `(lim_(x->a)(x^(5/8)-a^(5/8))/(x-a))/(lim_(x->a)(x^(2/3)-a^(2/3))/(x-a))`
`= (5/8 a^(5/8 - 1))/(2/3 a^(2/3 - 1))`
`= 5/8 xx 3/2 xx ("a"^((-3)/8))/("a"^((-1)/3))`
`= 15/16 xx "a"^(-1/24)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Find the derivative of the following function from the first principle.
log(x + 1)
Show that the function f(x) = 2x - |x| is continuous at x = 0
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to:
`"d"/"dx" (1/x)` is equal to: