Advertisements
Advertisements
प्रश्न
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
उत्तर
`lim_(x->0) (sin^2 3x)/x^2`
`= lim_(x->0) (sin 3x)/x xx (sin 3x)/x`
`= lim_(x->0) (3 sin 3x)/(3x) xx (3 sin 3x)/(3x)`
`= 3xx3 lim_(x->0) (sin 3x)/(3x) xx lim_(x->0) (sin 3x)/(3x)`
= 9 × 1 = 9
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Find the derivative of the following function from the first principle.
x2
Find the derivative of the following function from the first principle.
log(x + 1)
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
`lim_(theta->0) (tan theta)/theta` =
For what value of x, f(x) = `(x+2)/(x-1)` is not continuous?
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to: