Advertisements
Advertisements
Question
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
Solution
`lim_(x->0) (sin^2 3x)/x^2`
`= lim_(x->0) (sin 3x)/x xx (sin 3x)/x`
`= lim_(x->0) (3 sin 3x)/(3x) xx (3 sin 3x)/(3x)`
`= 3xx3 lim_(x->0) (sin 3x)/(3x) xx lim_(x->0) (sin 3x)/(3x)`
= 9 × 1 = 9
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Find the derivative of the following function from the first principle.
log(x + 1)
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
`lim_(theta->0) (tan theta)/theta` =
`"d"/"dx"` (5ex – 2 log x) is equal to:
If y = e2x then `("d"^2"y")/"dx"^2` at x = 0 is: