Advertisements
Advertisements
Question
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Solution
Given that f(x) = `(x^2 - 9)/(x-3)`, and f(3) = 6
`"L"[f(x)]_(x=3) = lim_(x->3^-) f(x)`
`= lim_(h->0)` f(3 - h)
`= lim_(h->0) ((3 - "h")^2 - 9)/(3-"h" - 3)`
`= lim_(h->0) (9 + "h"^2 - 6"h" - 9)/(- "h")`
`= lim_(h->0) ("h"^2 - 6"h")/(-"h")`
`= lim_(h->0) ("h"("h - 6"))/(- "h")`
`= lim_(h->0) (h - 6)/(-1)`
`= lim_(h->0) (0 - 6)/(-1)` = 6
`"R"[f(x)]_(x=3^+) = lim_(x->3^+) f(x)`
[∵ x = 3 + h, where h → 0, x → 3]
`= lim_(h->0) "f"(3 + "h")`
`= lim_(h->0) ((3 + "h")^2 - 9)/(3 + "h" - 3)`
`= lim_(h->0) (9 + "h"^2 + 6"h" - 9)/"h"`
`= lim_(h->0) ("h"^2 + 6"h")/"h"`
`= lim_(h->0) ("h"("h + 6"))/"h"`
= 0 + 6
= 6
Also given that f(3) = 6
Thus `"L"[f(x)]_(x=3) = "R"[f(x)]_(x=3) = f(3)`
i.e., `lim_(x->3^-) "f"(x) = lim_(x->3^+) "f"(x)` = f(3)
∴ The given function f(x) is continuous at x = 3.
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Find the derivative of the following function from the first principle.
ex
For what value of x, f(x) = `(x+2)/(x-1)` is not continuous?
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to:
`"d"/"dx" (1/x)` is equal to:
If y = x and z = `1/x` then `"dy"/"dx"` =