English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 11

Let f(x) = abx + 1ax+bx + 1, if limx→0f(x)=2 and limx→∞f(x)=1, then show that f(-2) = 0 - Business Mathematics and Statistics

Advertisements
Advertisements

Question

Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0

Sum

Solution

Given that `lim_(x->0) f(x) = 2`

i.e., `lim_(x->0) ("a"x + "b")/("x + 1") = 2`

`("a"(0) + "b")/(0 + 1) = 2`

b = 2

Also given that `lim_(x->0) f(x) = 1`

i.e., `lim_(x->∞) ("a"x + "b")/("x + 1") = 1`

`lim_(x->∞) = (x("a" + "b"/x))/(x(1 + 1/x))` = 1

`lim_(x->∞) = (("a" + "b"/x))/((1 + 1/x))` = 1

`(a + 0)/(1 + 0)` = 1

a = 1

Now f(x) = `("a"x + "b")/("x + 1")`

f(x) = `(x + 2)/(x + 1)`  [∵ a = 1, b = 2]

f(-2) = `(-2 + 2)/(-2 + 1) = 0/1 = 0`

shaalaa.com
Limits and Derivatives
  Is there an error in this question or solution?
Chapter 5: Differential Calculus - Exercise 5.2 [Page 110]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 11 TN Board
Chapter 5 Differential Calculus
Exercise 5.2 | Q 5 | Page 110
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×