Advertisements
Advertisements
Question
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Solution
Given that `lim_(x->0) f(x) = 2`
i.e., `lim_(x->0) ("a"x + "b")/("x + 1") = 2`
`("a"(0) + "b")/(0 + 1) = 2`
b = 2
Also given that `lim_(x->0) f(x) = 1`
i.e., `lim_(x->∞) ("a"x + "b")/("x + 1") = 1`
`lim_(x->∞) = (x("a" + "b"/x))/(x(1 + 1/x))` = 1
`lim_(x->∞) = (("a" + "b"/x))/((1 + 1/x))` = 1
`(a + 0)/(1 + 0)` = 1
a = 1
Now f(x) = `("a"x + "b")/("x + 1")`
f(x) = `(x + 2)/(x + 1)` [∵ a = 1, b = 2]
f(-2) = `(-2 + 2)/(-2 + 1) = 0/1 = 0`
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Find the derivative of the following function from the first principle.
x2
Find the derivative of the following function from the first principle.
log(x + 1)
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
Show that the function f(x) = 2x - |x| is continuous at x = 0
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
`"d"/"dx" (1/x)` is equal to:
If y = log x then y2 =