Advertisements
Advertisements
Question
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Solution
`lim_(x-> 2)` f(x)
= `lim_(x-> 2) (x^7 - 128)/(x^5 - 32)`
= `lim_(x-> 2) (x^7 - 2^7)/(x^5 - 2^5)`
= `(lim_(x-> 2) (x^7 - 2^7)/(x-2))/(lim_(x-> 2)(x^5 - 2^5)/(x-2))` ....[Divide both numerator amd denominator by x - 2]
`= (7 * 2^6)/(5 * 2^4)` ....`[lim_(x->"a") (x^n - "a"^n)/(x - a)]`
`= 7/5 xx 2^2 = 28/5`
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Show that f(x) = |x| is continuous at x = 0.
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
`"d"/"dx" ("a"^x)` =