English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 11

If f(x)= {x-|x|xif x≠02ifx=0 then show that limx→1f(x) does not exist. - Business Mathematics and Statistics

Advertisements
Advertisements

Question

If f(x)= `{((x - |x|)/x if  x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.

Sum

Solution

`"L"["f"(x)]_(x=0) = lim_(x->0^-) "f"(x) = lim_(h->0) "f"(0 - "h")`

`= lim_(h->0) "f"(-"h") = lim_(h->0) ((-"h") - |- "h"|)/(-"h")`

`= lim_(h->0) (- "h" - "h")/(- "h")`

`= lim_(h->0) (-2cancel("h"))/(-cancel(h))`

`= lim_(h->0) 2` = 2  ...[∵ |- h| = h]   ...(1)

`"R"["f"(x)]_(x=0) = lim_(x->0) "f"(x) = lim_(x->0) "f"(0 + "h")`

`= lim_(h->0)` f(h)

`= lim_(h->0) ("h" - |"h"|)/"h"`

`= lim_(h->0) ("h - h")/"h"`

`= lim_(h->0) 0/"h"` = 0   ...(2)

From (1) and (2),

`"L"["f"(x)]_(x=0) ne "R"["f"(x)]_(x=0)`

`therefore lim_(x-> ∞) "f"(x)` does not exist.

shaalaa.com
Limits and Derivatives
  Is there an error in this question or solution?
Chapter 5: Differential Calculus - Miscellaneous Problems [Page 125]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 11 TN Board
Chapter 5 Differential Calculus
Miscellaneous Problems | Q 3 | Page 125
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×