Advertisements
Advertisements
Question
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
Solution
`"L"["f"(x)]_(x=0) = lim_(x->0^-) "f"(x) = lim_(h->0) "f"(0 - "h")`
`= lim_(h->0) "f"(-"h") = lim_(h->0) ((-"h") - |- "h"|)/(-"h")`
`= lim_(h->0) (- "h" - "h")/(- "h")`
`= lim_(h->0) (-2cancel("h"))/(-cancel(h))`
`= lim_(h->0) 2` = 2 ...[∵ |- h| = h] ...(1)
`"R"["f"(x)]_(x=0) = lim_(x->0) "f"(x) = lim_(x->0) "f"(0 + "h")`
`= lim_(h->0)` f(h)
`= lim_(h->0) ("h" - |"h"|)/"h"`
`= lim_(h->0) ("h - h")/"h"`
`= lim_(h->0) 0/"h"` = 0 ...(2)
From (1) and (2),
`"L"["f"(x)]_(x=0) ne "R"["f"(x)]_(x=0)`
`therefore lim_(x-> ∞) "f"(x)` does not exist.
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Find the derivative of the following function from the first principle.
log(x + 1)
Verify the continuity and differentiability of f(x) = `{(1 - x if x < 1),((1 - x)(2 - x) if 1 <= x <= 2),(3 - x if x > 2):}` at x = 1 and x = 2.
`lim_(theta->0) (tan theta)/theta` =
`"d"/"dx" (1/x)` is equal to:
If y = x and z = `1/x` then `"dy"/"dx"` =
If y = log x then y2 =