Advertisements
Advertisements
प्रश्न
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
उत्तर
`"L"["f"(x)]_(x=0) = lim_(x->0^-) "f"(x) = lim_(h->0) "f"(0 - "h")`
`= lim_(h->0) "f"(-"h") = lim_(h->0) ((-"h") - |- "h"|)/(-"h")`
`= lim_(h->0) (- "h" - "h")/(- "h")`
`= lim_(h->0) (-2cancel("h"))/(-cancel(h))`
`= lim_(h->0) 2` = 2 ...[∵ |- h| = h] ...(1)
`"R"["f"(x)]_(x=0) = lim_(x->0) "f"(x) = lim_(x->0) "f"(0 + "h")`
`= lim_(h->0)` f(h)
`= lim_(h->0) ("h" - |"h"|)/"h"`
`= lim_(h->0) ("h - h")/"h"`
`= lim_(h->0) 0/"h"` = 0 ...(2)
From (1) and (2),
`"L"["f"(x)]_(x=0) ne "R"["f"(x)]_(x=0)`
`therefore lim_(x-> ∞) "f"(x)` does not exist.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Find the derivative of the following function from the first principle.
x2
Find the derivative of the following function from the first principle.
ex
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
Verify the continuity and differentiability of f(x) = `{(1 - x if x < 1),((1 - x)(2 - x) if 1 <= x <= 2),(3 - x if x > 2):}` at x = 1 and x = 2.
If y = e2x then `("d"^2"y")/"dx"^2` at x = 0 is:
If y = log x then y2 =