Advertisements
Advertisements
प्रश्न
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
उत्तर
`lim_(x-> 2)` f(x)
= `lim_(x-> 2) (x^7 - 128)/(x^5 - 32)`
= `lim_(x-> 2) (x^7 - 2^7)/(x^5 - 2^5)`
= `(lim_(x-> 2) (x^7 - 2^7)/(x-2))/(lim_(x-> 2)(x^5 - 2^5)/(x-2))` ....[Divide both numerator amd denominator by x - 2]
`= (7 * 2^6)/(5 * 2^4)` ....`[lim_(x->"a") (x^n - "a"^n)/(x - a)]`
`= 7/5 xx 2^2 = 28/5`
APPEARS IN
संबंधित प्रश्न
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Show that the function f(x) = 2x - |x| is continuous at x = 0
`lim_(theta->0) (tan theta)/theta` =
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
For what value of x, f(x) = `(x+2)/(x-1)` is not continuous?
`"d"/"dx" (1/x)` is equal to:
`"d"/"dx"` (5ex – 2 log x) is equal to:
If y = e2x then `("d"^2"y")/"dx"^2` at x = 0 is: