Advertisements
Advertisements
प्रश्न
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
उत्तर
`lim_(x->2) (x^n - 2^n)/(x-2) = 448`
i.e., n 2n-1 = 7 × 26
n × 2n-1 = 7 × 27-1
∴ n = 7
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Find the derivative of the following function from the first principle.
log(x + 1)
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
`lim_(theta->0) (tan theta)/theta` =
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to: