Advertisements
Advertisements
प्रश्न
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
उत्तर
`lim_(x->2) (x^n - 2^n)/(x-2) = 448`
i.e., n 2n-1 = 7 × 26
n × 2n-1 = 7 × 27-1
∴ n = 7
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Show that f(x) = |x| is continuous at x = 0.
Find the derivative of the following function from the first principle.
x2
Show that the function f(x) = 2x - |x| is continuous at x = 0
`"d"/"dx"` (5ex – 2 log x) is equal to: