Advertisements
Advertisements
Question
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
Solution
`lim_(x->2) (x^n - 2^n)/(x-2) = 448`
i.e., n 2n-1 = 7 × 26
n × 2n-1 = 7 × 27-1
∴ n = 7
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
If y = x and z = `1/x` then `"dy"/"dx"` =
If y = e2x then `("d"^2"y")/"dx"^2` at x = 0 is: