Advertisements
Advertisements
प्रश्न
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
उत्तर
`lim_(x->∞) (sum "n")/"n"^2`
= `lim_(x->∞) (("n"("n"+1))/2)/"n"^2`
= `lim_(x->∞) ("n"^2(1 + 1/"n"))/(2"n"^2)`
= `lim_(x->∞) 1/2(1 + 1/"n")`
= `1/2 (1+1/∞)`
`= 1/2`(1 + 0)
`= 1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Find the derivative of the following function from the first principle.
x2
Find the derivative of the following function from the first principle.
ex
Show that the function f(x) = 2x - |x| is continuous at x = 0
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to: