Advertisements
Advertisements
प्रश्न
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
उत्तर
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
= `lim_(x->0) (sqrt(1+x) - sqrt(1-x))/(5x) xx ((sqrt(1+x) + sqrt(1-x))/(sqrt(1+x) + sqrt(1-x)))`
= `lim_(x->0) ((1+x)-(1-x))/(5x(sqrt(1+x) + sqrt(1-x)))`
= `lim_(x->0) ((1+x-1+x))/(5x(sqrt(1+x) + sqrt(1-x)))`
= `lim_(x->0) (2x)/(5x(sqrt(1+x) + sqrt(1-x)))`
= `lim_(x->0) (2)/(5(sqrt(1+0) + sqrt(1-0)))`
`= 2/(5(1+1)) = 1/5`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Find the derivative of the following function from the first principle.
x2
Find the derivative of the following function from the first principle.
ex
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
Show that the function f(x) = 2x - |x| is continuous at x = 0
Verify the continuity and differentiability of f(x) = `{(1 - x if x < 1),((1 - x)(2 - x) if 1 <= x <= 2),(3 - x if x > 2):}` at x = 1 and x = 2.
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
If y = x and z = `1/x` then `"dy"/"dx"` =