Advertisements
Advertisements
प्रश्न
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
उत्तर
`lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
`= lim_(x->1) ((2x - 3)(sqrtx - 1))/((2x + 3)(x - 1))` ..`- 6 {(3/2 = 2x + 3),((-2)/2 = x - 1):}`
`= lim_(x->1) ((2x - 3)(sqrtx - 1))/((2x + 3)(sqrtx - 1)(sqrtx + 1))` ...[∵ a2 - b2 = (a + b)(a - b)]
`= lim_(x->1) (2x - 3)/((2x + 3)(sqrtx + 1))`
`= (2(1) - 3)/([2(1) + 3][sqrt1 + 1])`
`= (-1)/((5)(2))`
`= (-1)/10`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Find the derivative of the following function from the first principle.
x2
Show that the function f(x) = 2x - |x| is continuous at x = 0
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
\[\lim_{x->0} \frac{e^x - 1}{x}\]=