Advertisements
Advertisements
प्रश्न
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
उत्तर
`lim_(x->0) (sin^2 3x)/x^2`
`= lim_(x->0) (sin 3x)/x xx (sin 3x)/x`
`= lim_(x->0) (3 sin 3x)/(3x) xx (3 sin 3x)/(3x)`
`= 3xx3 lim_(x->0) (sin 3x)/(3x) xx lim_(x->0) (sin 3x)/(3x)`
= 9 × 1 = 9
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->2} \frac{x^3 + 2}{x + 1}\]
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
Show that the function f(x) = 2x - |x| is continuous at x = 0
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
If y = x and z = `1/x` then `"dy"/"dx"` =
`"d"/"dx" ("a"^x)` =