Advertisements
Advertisements
प्रश्न
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
उत्तर
Given that `lim_(x->0) f(x) = 2`
i.e., `lim_(x->0) ("a"x + "b")/("x + 1") = 2`
`("a"(0) + "b")/(0 + 1) = 2`
b = 2
Also given that `lim_(x->0) f(x) = 1`
i.e., `lim_(x->∞) ("a"x + "b")/("x + 1") = 1`
`lim_(x->∞) = (x("a" + "b"/x))/(x(1 + 1/x))` = 1
`lim_(x->∞) = (("a" + "b"/x))/((1 + 1/x))` = 1
`(a + 0)/(1 + 0)` = 1
a = 1
Now f(x) = `("a"x + "b")/("x + 1")`
f(x) = `(x + 2)/(x + 1)` [∵ a = 1, b = 2]
f(-2) = `(-2 + 2)/(-2 + 1) = 0/1 = 0`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\lim_{x->∞} \frac{2x + 5}{x^2 + 3x + 9}\]
If f(x) = `(x^7 - 128)/(x^5 - 32)`, then find `lim_(x-> 2)` f(x)
Find the derivative of the following function from the first principle.
x2
Find the derivative of the following function from the first principle.
ex
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
`lim_(theta->0) (tan theta)/theta` =
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
For what value of x, f(x) = `(x+2)/(x-1)` is not continuous?
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to: