Advertisements
Advertisements
प्रश्न
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
उत्तर
Given that `lim_(x->0) f(x) = 2`
i.e., `lim_(x->0) ("a"x + "b")/("x + 1") = 2`
`("a"(0) + "b")/(0 + 1) = 2`
b = 2
Also given that `lim_(x->0) f(x) = 1`
i.e., `lim_(x->∞) ("a"x + "b")/("x + 1") = 1`
`lim_(x->∞) = (x("a" + "b"/x))/(x(1 + 1/x))` = 1
`lim_(x->∞) = (("a" + "b"/x))/((1 + 1/x))` = 1
`(a + 0)/(1 + 0)` = 1
a = 1
Now f(x) = `("a"x + "b")/("x + 1")`
f(x) = `(x + 2)/(x + 1)` [∵ a = 1, b = 2]
f(-2) = `(-2 + 2)/(-2 + 1) = 0/1 = 0`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`lim_(x->∞) (sum "n")/"n"^2`
Evaluate the following:
`lim_(x->0) (sin^2 3x)/x^2`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Find the derivative of the following function from the first principle.
log(x + 1)
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
For what value of x, f(x) = `(x+2)/(x-1)` is not continuous?
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to:
If y = e2x then `("d"^2"y")/"dx"^2` at x = 0 is:
`"d"/"dx" ("a"^x)` =