Advertisements
Advertisements
प्रश्न
`"d"/"dx" ("a"^x)` =
पर्याय
`1/(x log_e"a")`
aa
x loge a
ax loge a
उत्तर
ax loge a
APPEARS IN
संबंधित प्रश्न
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 4)/(x-2) "," if x ≠ 2),(0 "," if x = 2):}` at x = 2
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
Show that f(x) = |x| is continuous at x = 0.
Find the derivative of the following function from the first principle.
ex
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
Show that the function f(x) = 2x - |x| is continuous at x = 0
\[\lim_{x->0} \frac{e^x - 1}{x}\]=
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to:
If y = e2x then `("d"^2"y")/"dx"^2` at x = 0 is: