Advertisements
Advertisements
प्रश्न
A function f(x) is continuous at x = a `lim_(x->"a")`f(x) is equal to:
पर्याय
f(-a)
`"f"(1/"a")`
2f(a)
f(a)
उत्तर
f(a)
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`lim_(x->a) (x^(5/8) - a^(5/8))/(x^(2/3) - a^(2/3))`
If `lim_(x->2) (x^n - 2^n)/(x-2) = 448`, then find the least positive integer n.
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Show that f(x) = |x| is continuous at x = 0.
Find the derivative of the following function from the first principle.
log(x + 1)
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
Show that the function f(x) = 2x - |x| is continuous at x = 0
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(0) is
`"d"/"dx"` (5ex – 2 log x) is equal to:
If y = x and z = `1/x` then `"dy"/"dx"` =