Advertisements
Advertisements
प्रश्न
Examine the following function for continuity at the indicated point.
f(x) = `{((x^2 - 9)/(x-3) "," if x ≠ 3),(6 "," if x = 3):}` at x = 3
उत्तर
Given that f(x) = `(x^2 - 9)/(x-3)`, and f(3) = 6
`"L"[f(x)]_(x=3) = lim_(x->3^-) f(x)`
`= lim_(h->0)` f(3 - h)
`= lim_(h->0) ((3 - "h")^2 - 9)/(3-"h" - 3)`
`= lim_(h->0) (9 + "h"^2 - 6"h" - 9)/(- "h")`
`= lim_(h->0) ("h"^2 - 6"h")/(-"h")`
`= lim_(h->0) ("h"("h - 6"))/(- "h")`
`= lim_(h->0) (h - 6)/(-1)`
`= lim_(h->0) (0 - 6)/(-1)` = 6
`"R"[f(x)]_(x=3^+) = lim_(x->3^+) f(x)`
[∵ x = 3 + h, where h → 0, x → 3]
`= lim_(h->0) "f"(3 + "h")`
`= lim_(h->0) ((3 + "h")^2 - 9)/(3 + "h" - 3)`
`= lim_(h->0) (9 + "h"^2 + 6"h" - 9)/"h"`
`= lim_(h->0) ("h"^2 + 6"h")/"h"`
`= lim_(h->0) ("h"("h + 6"))/"h"`
= 0 + 6
= 6
Also given that f(3) = 6
Thus `"L"[f(x)]_(x=3) = "R"[f(x)]_(x=3) = f(3)`
i.e., `lim_(x->3^-) "f"(x) = lim_(x->3^+) "f"(x)` = f(3)
∴ The given function f(x) is continuous at x = 3.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`lim_(x->0) (sqrt(1+x) - sqrt(1-x))/x`
If `lim_(x->a) (x^9 + "a"^9)/(x + "a") = lim_(x->3)` (x + 6), find the value of a.
Let f(x) = `("a"x + "b")/("x + 1")`, if `lim_(x->0) f(x) = 2` and `lim_(x->∞) f(x) = 1`, then show that f(-2) = 0
Show that f(x) = |x| is continuous at x = 0.
If f(x)= `{((x - |x|)/x if x ≠ 0),(2 if x = 0):}` then show that `lim_(x->1)`f(x) does not exist.
Evaluate: `lim_(x->1) ((2x - 3)(sqrtx - 1))/(2x^2 + x - 3)`
Show that the function f(x) = 2x - |x| is continuous at x = 0
For what value of x, f(x) = `(x+2)/(x-1)` is not continuous?
If y = x and z = `1/x` then `"dy"/"dx"` =
`"d"/"dx" ("a"^x)` =